Dynamic Object Scanning: Object-Based Elastic Timeline for Quickly Browsing First-Person Videos

Seita Kayukawa¹ Keita Higuchi² Ryo Yonetani² Masanori Nakamura¹ Yoichi Sato² Shigeo Morishima³ ¹Waseda University ²University of Tokyo ³Waseda Research Institute for Science and Engineering

Introduction

First-person videos captured by wearable cameras

- · Large and diverse collection of long and untrimmed videos
- · Important events can be distributed sparsely

Our Goal

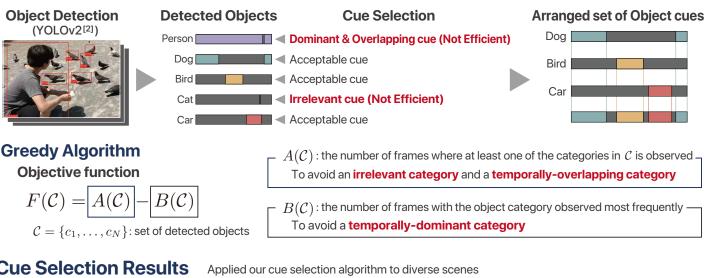
Redundant scene

To present adaptive video fast-forwarding technique that helps users to browse long and untrimmed videos quickly

Event scene

Related Work

Adaptive Video Fast-forwarding based on User Input^[1]


User input with Egocentric cue Adaptive fast-forwarding

Specified frames **Movements** of recorder Hand manipulation Fast-forwarding Normal playback Social interaction

Limitation: The type of cues have been fixed for any given video Limits the variety of videos that can get the benefit of Egocentric cue

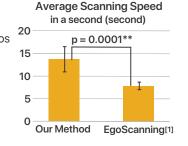
Our Approach

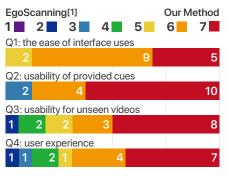
Key Idea: To generate a efficient set of cues arranged adaptively tailored to the contents of a given video

Cue Selection Results

Strolling in the street

Selected cues Bicycle		Selected cues Backpack
Motorcycle		Potted plant
Umbrella	B) Playing in	Dining table
Boat	an amusement park	Chair Chair
Cow		Suitcase
Omitted cue Person		Omitted cue


Pedestrians were **detected in nearly every frames** Person was **not selected** as cue


Our algorithm selects a set of cues while excluding temporally dominant categories

User Study

Task: Finding predefined event from long first-person videos Participants: 16 university students Our Interface: Object cues selected by our method

Baseline (EgoScanning^[1]): Fixed Egocentric cues

Feedback

Object cues helped several users to infer the contents of given videos.

Object cues are useful to find important events since they often emphasized only a limited part of videos.

References [1] K.Higuchi et al., "EgoScanning: Quickly Scanning First-Person Videos with Egocentric Elastic Timeline", CHI 2017 [2] J.Redmon, "YOLO9000: Better, Faster Stronger", CVPR 2017