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Abstract
This work presents the Dynamic Object Scanning (DO-
Scanning), a novel interface that helps users browse
long and untrimmed first-person videos quickly. The pro-
posed interface offers users a small set of object cues
generated automatically tailored to the context of a given
video. Users choose which cue to highlight, and the in-
terface in turn fast-forwards the video adaptively while
keeping scenes with highlighted cues played at original
speed. Our experimental results have revealed that the
DO-Scanning arranged an efficient and compact set of
cues, and this set of cues is useful for browsing a diverse
set of first-person videos.
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Introduction
We envision a future where people are equipped with
wearable cameras, such as Google Glass and GoPro
Hero, habitually to record visual experience of every-
day life. Such a continuous use of wearable cameras
will produce a very large and diverse collection of long
and untrimmed first-person points-of-view videos. These
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Figure 1: Dynamic Object Scanning (DO-Scanning)

videos contain a variety of moments such as daily conver-
sations with colleagues, cooking at home, or even more
special events like traveling to another country. Our goal
in this work is to develop a novel user interface that as-
sists people to quickly browse first-person videos of such
diverse visual experiences.

A typical solution to browse long and untrimmed first-
person videos is video summarization techniques that
extract significant scenes automatically from the videos
under certain criteria (e.g., [3, 8], and Google Clips1).
However, video summaries generated automatically do
not always reflect specific interests that users may have
and can unexpectedly omit parts of videos that they seek.

Another solution is to adaptively fast-forward videos while
playing significant scenes at a lower speed [7]. In particu-
lar, we are interested in elastic timeline [2], which allows
users to input their preferences interactively. Based on
this interaction, the elastic timeline fast-forwards videos
adaptively according to the specified significance. For
example, if users set high significance to ‘people,’ the
timeline fast-forwards videos while playing all scenes with
people at the original speed.

1store.google.com/product/google_clips

Despite its conceptual novelty, practical applications of
the elastic timeline are still limited. While [2] allows users
to highlight a set of cues specific to first-person videos,
such as hand manipulations, walking/standing still and
conversations, these cues have been fixed for any given
video. As a result, the choice of these cues does not nec-
essarily reflect the underlying semantic context of videos,
which significantly limits the variety of videos that can en-
joy the benefit of elastic timeline. For example, consider a
scenario where users browse first-person videos of cook-
ing. Since such videos would typically capture recorder’s
hands nearly in every time like shown in Figure 1, the
hand cue would never help users to browse the video. To
work around a diverse set of first-person videos, the in-
terface requires a more sophisticated choice of semantic
cues to describe a variety of scenes in detail.

In this work, we develop a novel interface based on the
elastic timeline which we code-named Dynamic Object
Scanning (DO-Scanning). As illustrated in Figure 1, the
DO-Scanning offers a set of object cues, categories of
objects detected automatically in a given video and ar-
ranged dynamically to describe the context of the video.
These object cues allow users to enhance various types
of scenes. For instance, if users set high significance to
the ’bowl’ cue, the interface will allow the users to access
all scenes with bowls (the frame highlighted in red in Fig-
ure 1) at the original speed.

As the backbone of DO-Scanning, we present an algo-
rithm to generate a compact and efficient set of object
cues from a diverse set of object categories found in
videos. Our algorithm selects a set of cues in a greedy
manner while excluding useless object categories such
as irrelevant categories hardly observed in the videos and



temporally dominant categories observed uniformly in
videos and cannot be used for adaptive fast-forwarding.

Dynamic Object Scanning
In this work, we will particularly focus on how to generate
a set of cues to adaptively fast-forward a diverse collec-
tion of first-person video. Below we first discuss some re-
quirements for cue selection, and then present a concrete
algorithm to discover a relevant set of cues automatically.
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Figure 2: Greedy selection of
object categories for constructing
an efficient and compact set of
cues. Each rectangle represents
a sequence of frames. Orange
rectangles describe frames which
will be emphasized by setting high
significance to individual object
categories from C1 to C6 or their
combinations like C1 +C2.

Dynamic and Semantic cue
As a cue that reflects a semantic context of each given
video, we focus on object cues, the presence of certain
object categories in videos. Just as object detection plays
an important role for tasks of video summarization [3] and
scene recognition [4] in computer vision, we expect the
object cues to assist users not only to infer the overall
semantic context of videos (e.g., types of activities and
places) but also to easily access specific scenes with cer-
tain contexts (e.g., some scenes when recorders looked
at particular objects). More specifically, we first run a pre-
trained YOLOv2 [6] to detect 80 object categories.

Compact and Efficient Sets of Cues
While object cues help users to access to a semantic
context of videos, displaying a large number of object
categories without considering each relevance to the
videos would be redundant and unhelpful for users. To
cope with this problem, we propose a greedy algorithm
that can select a compact and efficient set of cues.

We show how our algorithm works with an example in
Figure 2. Suppose that object categories C1 and C2 are
given as a part of the final set of cues, and we try to add a
new cue from C3, C4, C5, and C6. Instances of C3 do not
appear frequently and would be irrelevant to the overall
semantic context of a given video. On the other hand, in-

stances of C4 appear in nearly every frame. While this ob-
ject certainly describes the context of the input video, this
cue will fast-forward videos uniformly and be redundant
for adaptive fast-forwarding. While instances of C5 are ob-
served in a moderate part of videos, they are significantly
overlapped by those of C1. This is another redundant
case where users will obtain highly similar fast-forwarding
patterns by setting high significance to either C1 or C5.
Finally, C6 does not violate any of the problems shown
above. Fast-forwarding patterns obtained by selecting C1,
C2, and C6 are all dissimilar and not redundant.

Algorithm Details
We formalize the aforementioned cue selection criteria
as follows. Let Call = {C1, . . . ,CN} be a set of all object
categories obtained via object detection and C ⇢ Call be
a set of the categories already selected as a cue. Our
algorithm is based on the following objective function
defined over a set of categories:

F(C) = A(C)�B(C). (1)

A(C) is the overall coverage term that indicates the num-
ber of frames where at least one of the categories in C
is observed. On the other hand, B(C) is the the individ-
ual coverage term describing the number of frames with
the object category observed most frequently. In each
greedy step, we select c 2 Call \C that maximizes F(C[ {c}).
With this maximization, A(C) helps to avoid an irrelevant
category like C3 and a temporally-overlapping category
like C5 in the previous example. On the other hand, B(C)
acts as a constraint to prevent each step from selecting
categories that are temporally dominant like C4 in our ex-
ample. The initial cues (C1 and C2 in the example) are
selected by exhaustively searching a set of two categories
for the ones that maximize the function F(C).
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Figure 3: DO-Scanning interface. While inheriting the general layout of EgoScanning on (A)
playback screen, (D) elastic timeline, (E) playback speed bar, and (F) links to other objects, we
present as a new functionality, (B) a set of object cues to emphasize a part of videos and (C) object
timeline indicating where specified objects are located.

In DO-Scanning, the number of object cues is fixed to
10. For processing 10 minute video recorded at 30 fps,
the object detector required about 15 minutes on a GPU
(NVIDIA Titan X), while the cue selection process can be
done in only 1.8 seconds on the CPU.

DO-Scanning Interface
Figure 3 shows the layout of DO-Scanning. Videos are
played in area (A), cues are arranged in area (B), links to
other videos are listed in area (F), the playback speed is
specified with bar (E), and the elastic timeline is shown
in (D). Moreover, we introduced the object timeline which
indicates where specified objects are located in area (C).

Experiment
As a preliminary study to validate the effectiveness of
DO-Scanning, we first observed what objects cues were
selected by the DO-Scanning for first-person videos of

various scenes. More specifically, we applied our cue
selection algorithm to 5 diverse scenes: strolling in the
street, playing in an amusement park [1], cooking at
home [5], strolling in the park, playing volleyball, some
of which were available as public datasets for computer
vision research or the others were uploaded to YouTube.

Then, we conducted a user study to compare the pro-
posed DO-Scanning interface with EgoScanning [2]. Six-
teen university students (Female: 4) served as a partic-
ipant. We asked them to watch fast-forwarded videos
shown above while manipulating object (DO-Scanning)
or egocentric (EgoScanning) cues provided by each inter-
face. Finally, we conducted an interview session for about
10 minutes to receive qualitative feedback.

Results
Cue Selection
Figure 4 shows cue selection results for two videos: A)
Strolling in the street and B) Playing in an amusement
park. Figure 4 also depicts some examples of video
frames, objects that are selected (top five ones) or omit-
ted (the bottom ones) by our algorithm, and timelines that
represent a sequence of frames. In addition, results for
the other video are shown in Figure 5: some examples of
video frames, a part of most frequently-observed object
categories obtained via object detection [6] as well as a
part of object cues that our algorithm selected greedily
from a set of detected objects.

Qualitative Feedback
After using both of DO-Scanning and EgoScanning in the
user study, many participants reported positive feedback
on DO-Scanning. Some qualitative feedback shared by
multiple participants are summarized below: A1 (10 par-
ticipants out of 16): “It was easy to infer what types of



scenes were emphasized by each object category”; A2
(8): “DO-Scanning was user-friendly because the tempo-
ral range emphasized by cues was limited”. On the other
hand, EgoScanning interface got negative feedback: A3
(13): “cues in EgoScanning could not be used effectively
as they often emphasized most parts of videos and did
not fast-forward videos adaptively”.

Participants provided mixed feedback on the number of
cues: A4 (5): “As the DO-Scanning provided 10 cues, I
was able to choose as many cues”; A5 (2): “Too many
and adaptively changing object cues made it difficult to
find appropriate cues to find target scenes”. Finally, nega-
tive opinions about DO-Scanning were mainly about video
E) playing volleyball: A6 (5): “As target scenes in volley-
ball videos were not characterized by objects but human
motion, it was not a good idea to focus on object cate-
gories. I would want the “hand” cue to watch the video”.
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Figure 4: Some examples of
video frames, objects that are
selected (yellow) or omitted (red)
by our algorithm and timelines
that represent a sequence of
frames.

Discussions
As shown in Figure 4 and 5, we confirmed that the object
cues were certainly arranged dynamically as different
object categories were selected for each video. For in-
stance, while ‘person’ was detected among all videos,
they were not selected as a cue in the video (A): strolling
in the street and video (B): playing in an amusement park.
This is because pedestrians were detected in nearly ev-
ery frame in those videos (the red rectangles in Figure 4).
Our algorithm can prevent such object categories from
being a part of temporally-dominant cues and instead pick
objects observed in a moderate part of videos.

Qualitative feedback mentioned that object cues from
our algorithm assisted users to watch the video (A1 and
A2). Particularly, participants acknowledged object cues
since they often emphasized only a limited part of videos

(A2), and EgoScanning obtained negative feedback on
this point (A3). We found that this type of cues were par-
ticularly helpful for users to browse long and untrimmed
videos. We also found that the number of cues is a rel-
atively sensitive parameter that affects user experience
on the use of DO-Scanning (A4 and A5). This number of
cues is currently fixed and has to be specified in advance.
One interesting extension of the DO-Scanning is to adap-
tively choose not only object categories to add but also
the maximum number of categories that can be accepted
based on user preferences.

On the other hand, our experiments suggest a potential
limitation of the current form of DO-Scanning. Object
cues were not useful when target scenes did not partic-
ularly involve objects but were characterized mostly by
camera wearers’ motion (A6). Such scenes were, for
instance, blocking a ball and setting a ball in volleyball
videos. Although we implemented object cues and human
behavior cues separately in DO-Scanning and EgoScan-
ning, these two types of cues can be used together.

Conclusions
We presented DO-Scanning, an interactive video player
based on the elastic timeline that adaptively fast-forwards
videos based on automated content analysis and user in-
puts. As the key technical contribution, the DO-Scanning
generates a set of object cues tailored to the context of a
given video.

We believe that our approach based on dynamically-
arranged object cues has made the concept of elastic
timeline much more applicable to videos taken under a
variety of scenarios. Along this direction of development,
one promising extension for future work is to generate a
set of cues in the same manner but from a large variety of



content analysis results, including not only object detec-
tion used in DO-Scanning. Such an extension will further
help the elastic timeline work on a variety of user needs
to watch first-person videos, such as finding scenes with
specific persons, specific places, and specific activities,
which we visually experience in our everyday life.
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Figure 5: Some examples of
video frames, some most
frequently-observed objects, and
a part of object cues selected by
our algorithm.


