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Figure 1: We present PathFinder, a map-less navigation system that can navigate blind people in unfamiliar buildings by 
detecting intersections and recognizing signs. 

ABSTRACT 
Indoor navigation systems with prebuilt maps have shown great 
potential in navigating blind people even in unfamiliar buildings. 
However, blind people cannot always beneft from them in ev-
ery building, as prebuilt maps are expensive to build. This paper 
explores a map-less navigation system for blind people to reach des-
tinations in unfamiliar buildings, which is implemented on a robot. 
We frst conducted a participatory design with fve blind people, 
which revealed that intersections and signs are the most relevant in-
formation in unfamiliar buildings. Then, we prototyped PathFinder, 
a navigation system that allows blind people to determine their way 
by detecting and conveying information about intersections and 
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signs. Through a participatory study, we improved the interface 
of PathFinder, such as the feedback for conveying the detection 

         results. Finally, a study with seven blind participants validated that 
PathFinder could  assist users in  unfamiliar buildings navigating

 with increased confdence compared to their regular aid. 
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1 INTRODUCTION 
Blind people face a signifcant challenge when navigating inde-
pendently to a destination in an unfamiliar building. To be able 
to navigate in such buildings with their regular navigation aids 
such as white canes or guide dogs, long-term familiarization by 
learning non-visual cues is necessary. Thus, in unfamiliar buildings, 
they usually need sighted people to accompany them to the desti-
nation [14], and when they are alone, they have to ask passersby 
for directions and further help on-site. Despite its difculty, blind 
people still travel in unfamiliar buildings [14, 25, 45], and hope to 
do so without being accompanied by a sighted person [14]. This 
suggests that there is a need for a navigation tool that will help 
blind people navigate unfamiliar buildings without having sighted 
people accompany them to the destination. 

To navigate blind people in unfamiliar buildings, previous re-
searches have utilized static route maps (i.e., a map with the route 
topology and points-of-interest (POIs) annotated) and localization 
methods on various devices (e.g., smartphones [5, 31, 56], wearable 
devices [40, 53] and robots [21, 33, 41]). By using static route maps, 
systems can provide users with turn-by-turn instructions and envi-
ronmental information (e.g., POIs and intersections), which allows 
users to reach their destinations. In particular, autonomous naviga-
tion robots [21, 29, 33] can guide blind people fully automatically to 
a destination, while ensuring users’ safety by avoiding surrounding 
obstacles using additional Light Detection And Ranging (LiDAR) 
map (i.e., a two-dimensional occupancy grid map made from LiDAR 
sensor data). Our previous studies [21, 29] have shown that the use 
of autonomous navigation robots is efective, as blind people only 
need to follow it, and therefore it can increase users’ confdence 
and decrease their cognitive load when navigating buildings. How-
ever, they cannot always beneft from such navigation systems, as 
these prebuilt maps (static route maps and/or LiDAR maps) require 
tedious and time-consuming labor from experts to build, verify, 
and deploy, making them expensive [56]. Therefore, we decided to 
prototype a map-less navigation system that uses the surrounding 
information to help guide the blind user. To build such a system, 
we aim to address the following research questions. (1) What kind 
of information is useful for blind people to reach a destination in 
unfamiliar buildings? (2) How can blind people interact with the 
assistance system to reach a destination in unfamiliar buildings? 

To answer these questions, we used a scenario-based participa-
tory design approach [55] with fve blind participants to understand 
what kind of environmental information would facilitate their nav-
igation in unfamiliar buildings when using a navigation robot as 
their aid. We used a navigation robot [29], which is grounded with 
wheels, for the implementation of our system as it can utilize a 
variety of sensors to collect environmental information, which in 
turn can be efciently processed and conveyed to the users via 
the attached high-performance computers and interfaces. Also, its 
guidance using motorized wheels allows users to focus on the navi-
gation by guiding the users safely without veering and collisions 
while walking to a specifc direction [21]. During the study, an 
experimenter gave the participants a description of a route, which 
was gathered from an interview session with ten sighted passersby. 
Then, assuming the experimenter as a navigation robot, the exper-
imenter accompanied the participants along the explained route 
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while describing several indoor features along the way. Throughout 
the study, the blind participants mainly expressed that intersections 
and signs, such as directional signs (i.e., signs which contain arrows 
to indicate where places are) and textual signs (i.e., signs which 
only contain texts, such as room numbers and names of places), are 
the most useful information when navigating unfamiliar buildings. 

Based on these fndings, we designed and prototyped a map-less 
navigation system, called PathFinder (Fig. 1), on top of a suitcase-
shaped robot. PathFinder is designed for navigating blind people in 
the scenario where the user has acquired the route description from 
sighted passersby. The user can command the system via its handle 
interface to fnd the next intersection (Fig. 1–C) or the end of a 
hallway, and describe visible directional and textual signs (Fig. 1–D) 
to identify the path to the destination. The system adopts audio 
feedback to the user to convey detection results, such as the shapes 
of intersections and descriptions of signs. 

A session for design iteration was conducted with the same 
fve blind participants to gather feedback and comments about 
the interface and functionalities of the system. Through the study, 
we obtained suggestions regarding the system’s audio feedback 
and handle interface. The participants also requested an additional 
“Take-me-back” functionality, where the system takes the user back 
to the location where they started their navigation. 

Finally, we conducted a user study with seven blind participants 
on the system after incorporating the suggestions from the partici-
patory study. During the study, we prepared two routes with several 
intersections and signs and asked the participants to navigate them 
using PathFinder and a topline system, which is a navigation system 
with prebuilt maps. Through our interview with the participants, 
we found that the participants felt they were able to navigate to the 
destination with increased confdence and less cognitive load with 
PathFinder compared to their daily navigation aid. In addition, while 
all participants mentioned that PathFinder required more efort for 
them to control than the system with prebuilt maps, they agreed 
that PathFinder is a useful navigation system as it can operate in 
more places, and they were able to navigate to their destinations 
without having to be accompanied by a sighted person. 

Below, we summarize the contribution of this paper. 
(1) We propose a map-less navigation robot system for navi-

gating blind people in unfamiliar buildings. To design the 
system, we performed a participatory study with blind peo-
ple to gather their insights and suggestions. Based on the 
study, we designed the system to recognize signs and detect 
intersections, then convey information to the blind user via 
audio feedback. 

(2) We conducted a quantitative and qualitative user study of 
the proposed map-less navigation robot system with seven 
blind participants. Based on the result, we discuss the func-
tionalities and the limitations of the system, and also provide 
insights for designs of future map-less navigation systems. 

2 RELATED WORK 

2.1 Navigation in Unfamiliar Buildings by Blind 
People 

The navigation of blind people in unfamiliar buildings has been 
studied broadly. A study by Jeamwatthanachai et al. [25] concluded 
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that navigating unfamiliar buildings is challenging for blind people 
because determining their current location and their route to a 
destination while also having to maintain their orientation is chal-
lenging without visual information and sufcient knowledge of the 
environment. Engel et al. [14] conducted a large-scale study about 
the travel behavior of blind people. In their study, 59.4% of 63 blind 
participants answered that they travel to an unfamiliar building 
several times a week, despite its difculty. According to their study, 
there are two main ways for blind people to fnd their route to 
a destination. One way is to search for the textual description of 
the route on the internet. Although this might seem like a feasible 
way, it has been reported that textual descriptions of routes are 
often not available and this preparation is time-consuming, hence 
some blind people do not prepare a route at all [14]. Another way 
is to ask sighted people for the route description on site. As this 
requires no preparation with the added chance that sighted people 
would accompany them to the destination, this is the most common 
option for blind people [14, 25, 51]. Finally, Engel et al. also showed 
that blind people want to navigate without having sighted people 
accompany them to the destination, which is the main motivation 
for our study. 

2.2 Indoor Navigation Systems for Blind People 
Past studies have proposed various navigation systems that help 
blind people navigate inside buildings [30, 34]. They usually utilize 
a static route map and diferent localization methods (e.g., blue-
tooth low energy (BLE) beacons [31, 56], ultrawide-bandwidth bea-
cons [41], and visual features [35, 40, 67]) to navigate a blind user 
to their destination. There are also several works that aimed to 
navigate blind people to avoid obstacles in their proximity with 
only real-time sensing results [42, 48, 61]. Such systems have been 
proposed using smartphones [31, 35, 36, 50, 56, 67], wearable de-
vices [10, 12, 26, 39, 40, 53], suitcase-shaped device [27, 28], and 
robots [21, 37, 41]. For example, Kayukawa et al. proposed obsta-
cle avoidance systems using a suitcase-shaped device that emits 
an alerting sound to clear nearby pedestrians from blind users’ 
way [27], and a suitcase with a directional lever that points a safe 
path to follow using a LiDAR map. Both systems require users to 
push the suitcase, which may cause navigation errors induced by 
users. On the other hand, robots have shown high potential in nav-
igating blind people, as blind people only have to follow the move-
ment of robots. Some researchers explored the interaction between 
such robots and blind people [1, 37, 64, 68], and other researchers 
have explored navigation algorithms for their assistance [21, 41, 62]. 
In particular, Carry-on-robot (CaBot) is a suitcase-shaped naviga-
tion robot that we presented earlier [21]. The robot plans its path 
by considering the user’s position relative to the robot and guides 
the user using a handle interface. However, the drawback of all 
these systems is that blind people cannot use them everywhere, as 
these systems require either or both static route maps to provide 
turn-by-turn instructions and additional LiDAR maps for planning 
obstacle-avoiding paths, both of which require tedious labor. There-
fore, we design a system that navigates users to their destination in 
unfamiliar buildings without requiring any prebuilt maps, i.e., both 
LiDAR map and static route map, so that blind people can beneft 
from the capabilities of navigation systems in a wide variety of 

places. To this end, we implement the map-less system on a robot 
as it can utilize various sensors and high-performance computers to 
process environmental information while allowing the users to fo-
cus on the task by relying on its obstacle-avoiding capability. Thus, 
in the next section, we introduce map-less navigation technologies 
used in robotics. 

2.3 Map-less Navigation Technology for Robots 
In robotics, many works have studied the problem of navigation 
in environments without prebuilt maps. To navigate a robot to a 
destination, several approaches rely on vision-based techniques; 
for example, matching real-time RGB images with sequences of 
pre-captured images for path following [9, 46], recognizing the 
surrounding objects to help with localization [11, 46], and using an 
image of the target location and applying reinforcement learning 
to fnd the path to the goal [43, 71]. While these methods do not 
use prebuilt maps, they use alternative information to navigate the 
robot to the destination. On the other hand, methods of naviga-
tion that create maps during exploration have also been proposed. 
Examples of these approaches include the construction of topo-
logical maps by detecting intersections [66] and occupancy maps 
using RGB images and deep reinforcement learning [52] while the 
robot is navigating the space. These methods do not require any 
information prior to the navigation because they aim to explore 
the environment. Inspired by these works, we utilize the naviga-
tion technique proposed for robot exploration to help navigate 
blind people in unfamiliar buildings, particularly the intersection 
detection technique. 

There have been several intersection detection algorithms pro-
posed for robots to determine their path in an environment where 
prebuilt maps are unavailable. Garcia et al. proposed a method to 
detect indoor intersections only with RGB images using a rule-
based algorithm [19] and convolution neural networks [20] for 
quadcopters. Intersection detection in complex environments such 
as outdoor and underground mines has also been explored in past 
studies using a LiDAR sensor [38, 44, 66, 70] and an RGB cam-
era [24]. In particular, Yang et al. [66] proposed a method to detect 
intersections in arbitrarily shaped environments using a 360◦ Li-
DAR sensor and a real-time simultaneous localization and mapping 
(SLAM) algorithm. However, since their motivation is to explore 
novel environments quickly and create extensive LiDAR maps in a 
short time, the robot may travel in a manner where it does not take 
an accompanying blind person into account. For example, a robot 
may move very close to a wall or change its orientation frequently. 
To build a map-less navigation system for blind people, we apply 
the method of Yang et al. [66] to detect intersections, and include 
additional functionalities to take into account the accompanying 
blind user. 

2.4 Shared Control for Robots 
Without prebuilt maps and reference information of the destination, 
navigation systems cannot determine the path to reach the destina-
tion. To handle this issue, we employ shared control, i.e., a method 
to control a robot using both human decision and the functionality 
of a system. According to Wang and Zhang [63], shared control 
is defned as a “case in which the robot motion is determined by 
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Figure 2: A foor map of the building where the study was conducted, showing the two routes, various POIs along the routes, 
and examples of the route descriptions. 

both the human operator and robot decisions in a mostly balanced 
fashion.” Shared control can be separated into near-operation, in 
which the operator perceives the scene with their direct sense, and 
teleoperation, in which the operator perceives the scene indirectly, 
such as through a screen. For example, near-operation has been 
used for assisting a driver to keep their vehicles in lane [47], con-
trolling a wheelchair [49, 57, 58], and for assisting blind people to 
navigate in familiar buildings [23, 32, 37], while teleoperation has 
been used for navigating where a human cannot go [2, 13, 22], or for 
reconnaissance [60]. Similar to previous work, PathFinder adopts 
near-operation shared control, so that users can complement miss-
ing map information that comes from map-less restriction, while the 
system can help users to navigate safely through buildings. Further-
more, our proposed system allows users to efectively determine 
the way to the destination in unfamiliar buildings by conveying 
environmental information, which is described in the next section. 

2.5 Conveying Environmental Information to 
Blind People 

For the purpose of supporting blind people during navigation, re-
searchers have worked on systems that can convey environmental 
information such as trafc lights [6, 59], doors [17, 54], intersec-
tions [36], and signs [1, 54, 65]. We particularly focus on conveying 
information about intersections and signs, as blind participants in 
our study have indicated that they are useful in unfamiliar buildings, 
which will be described in Section 3.2. 

2.5.1 Intersection Information. Detecting and/or utilizing intersec-
tion information has also been done in the feld of accessibility 
to provide turn-by-turn instructions to blind users [16, 36, 37, 56]. 
Lacey and MacNamara explored a smart walker with passive trac-
tion to navigate the elderly blind by informing intersections as 
landmarks in a controlled and familiar building, such as a resi-
dential home [37]. Also, Kuribayashi et al. proposed a system for 
blind people that conveys the location and shape of intersections 
by detecting them using a LiDAR map constructed with a smart-
phone [36]. In their study, they revealed that conveying the shape 
of the intersection is efective for the navigation of blind people, as 

it helps them to localize themselves and to learn about the environ-
ment [36]. Therefore, based on their fndings, we also convey the 
shape of the intersection every time blind users reach it. 

2.5.2 Sign Information. Sign information has been considered a 
useful object to detect, as they generally contain information about 
the surroundings. In the area of computer vision, researchers have 
aimed to recognize texts on signs in the real-world [8] or detect sign 
boards [3]. On the other hand, signs that appear in indoor environ-
ments contain arrows that correspond with words that represent 
locations. Thus, to assist blind people to determine their way, a 
diferent system has been proposed in the feld of accessibility. Saha 
et al. [54] developed a system that can read signs on a smartphone 
and revealed that reading textual signs (e.g., names of surrounding 
shops) can help blind people reach their destination. Yamanaka et 
al. [65] proposed a method to recognize all directional signs using a 
360◦ RGB camera and verifed that their system helped blind partic-
ipants make a decision at intersections in tactile pavings. However, 
each of them reads either directional signs or textual signs. In con-
trast, we propose a sign recognition algorithm that can distinguish 
and read both directional and textual signs. We achieve this by uti-
lizing an object detection model to detect arrows and words, and by 
proposing a new algorithm that will analyze their correspondence. 

3 PARTICIPATORY DESIGN WITH BLIND 
PEOPLE 

This section describes the participatory design of our proposed 
navigation robot system. To do so, we adopted a scenario-based 
approach to consider the design of the system [55]. The scenario 
used for our study sessions is as follows: A blind person is navigating 
in an unfamiliar building with a navigation robot to reach his/her 
destination. As the building is unfamiliar to the blind person, he/she 
acquires the route description from sighted passersby in the build-
ing. We prepared two routes with diferent characteristics for this 
scenario-based study. To make the scenario more specifc, we frst 
conducted an interview with ten sighted passersby to investigate 
what route description they would convey to blind people. Then, 
we had a design session with fve blind participants to understand 
what information would be useful for them to navigate an unfamil-
iar place with only the route description from sighted passersby. 
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Table 1: Top three pieces of information and the number of intersections described by sighted passersby. 

Top Three Information in Route Descriptions by Sighted Passersby Route For Sighted Questioner For Blind Questioner 

Intersections with directions (70%) Intersections with directions (100%) 
R1 End of the hallway (40%) Distance to walk (60%) 

Doors along the way (40%) Where the wall are (60%) 

Intersections with directions (100%) Intersections with directions (100%) 
Downhill corridor (60%) Downhill corridor (60%) R2 Existence of the library (50%) Distance to walk (60%) 

Where the wall are (60%) 

Number of Intersections Described 
For Sighted Questioner For Blind Questioner 

Mean = 2.0 Mean = 2.4 
Median = 2.0 Median = 3.0 

Mean = 2.9 Mean = 3.6 
Median = 3.0 Median = 4.0 

This study was approved by the institutional review board (IRB) of 
our institution, and an informed consent was obtained from every 
participant. 

3.1 Routes For The Study 
Route 1 (R1), shown on the left side of Fig. 2, is a narrow corridor 
in a building. The route has three intersections (indicated in blue 
dots) and its length is approximately 46 m. It also has furniture, 
rubbish bins, a kitchen, and signs indicating room numbers along 
the way. Route 2 (R2) is a wide corridor that spans two buildings. 
The route has four intersections and its length is approximately 
166 m. The route also has a glass bridge, a library, an elevator, and 
signs indicating the names of the buildings along the way. 

3.1.1 Interview with Sighted Passersby. We recruited ten passersby 
who knew both R1 and R2 and conducted a ten-minute interview 
with $5 of compensation. For each route, we asked the participants 
to describe the route two times for two diferent cases: one for a 
sighted questioner, and another for a blind questioner. An example 
of a route description given by them is illustrated on the right side 
of Fig. 2. 

Table 1 shows the top three pieces of information and the num-
ber of intersections described by the participants. We found that 
descriptions of intersections are always mentioned when assuming 
the questioner is blind, but could be omitted when assuming the 
questioner is sighted. Also, when we counted the number of in-
tersections described in the route descriptions, both the mean and 
median values were higher when assuming the questioner is blind. 
Participants described the diference in explaining the routes to 
sighted and blind people as follows. C1: (Comment number 1) “It’s 
not possible for blind people to read any graphical signs. For example, 
signs like the map of the building, plates on the wall which have room 
numbers, and signs hanging from the ceiling. Without any of these 
details, the best information I can convey is about which directions to 
take when it’s needed.” These results indicate that sighted passersby 
describe which directions to turn at intersections particularly care-
fully to blind people. 

3.2 Scenario-Based Study With Blind People 
We recruited fve blind participants (P01–P05 in Table 2). For each 
participant, we conducted a brief interview to gather their experi-
ence in navigating unfamiliar buildings. We then asked the blind 

participants to provide information that would make them conf-
dent in unfamiliar buildings if they are navigating with a navigation 
robot system. To do so, an experimenter frst explained R1 and R2 
with the description given by the sighted passersby in the previous 
interview (Section 3.1.1), and then guided blind participants along 
the routes, asking them to think of the experimenter as a robot. 
During guidance, the experimenter explained indoor features, such 
as intersections, directional signs, textual signs, furniture (e.g., sofas, 
refrigerators, monitors, and tables), landmarks (e.g., a robot arm 
and elevators), facilities (e.g., libraries, kitchens, laboratories, and 
toilets), obstacles (e.g., rubbish bins and potted plants), and building 
structures (e.g., glass bridge and downhill corridor). After that, we 
asked the participants to rate each piece of information based on 
how confdent it made them about their surroundings on a seven 
point Likert scale (1: Strongly disagree, 4: Neutral, and 7: Strongly 
agree). The interview took 75 minutes and each participant was 
compensated $35. 

3.2.1 Results. All the participants answered that they have experi-
ence navigating unfamiliar buildings (e.g., hospitals, airports, and 
universities) and agreed that they usually rely on sighted passersby. 
P04 mentioned their experience of navigating in unfamiliar build-
ings as follows. C2:“When I’m navigating in an unfamiliar building, 
the only information I have is the room number (of the destination). I 
don’t get any information about the route I have to take, so I have to 
rely on the frst person I meet in the building to get there.” (P04) 

Fig. 3 shows the provided ratings for how useful each indoor 
feature was. The result shows that intersections, directional signs, 
and textual signs are relatively the most useful information when 
navigating an unfamiliar building with a robot. Taking this result 
into account, we designed the functionality of our proposed system 
as discussed in the next section. 

3.3 System Design 
Based on the interviews with both the sighted passersby and the 
blind participants, we designed Pathfnder to have two modules: 
An intersection detection module and a sign recognition module. 

3.3.1 Intersection Detection. Based on our interview with sighted 
passersby, the route description conveyed to blind people mainly 
consists of which turns to take at intersections (Section 3.1.1). Blind 
participants also indicated that intersections are one of the most 
useful information in unfamiliar buildings. Therefore, we designed 
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Figure 3: Questions and responses from our participatory study with fve blind persons about useful indoor features. Responses 
are ratings on a seven-point Likert scale. 

Table 2: Demographic information of the blind participants 
in our participatory study (P01–P05). 

ID Age Age of onset Gender Navigation Aid 
P01 74 32 Male Cane 
P02 67 10 Female Guide dog 
P03 38 0 Female Guide dog 
P04 76 0 Female Cane 
P05 59 0 Male Guide dog 

the system to be able to detect intersections together with their 
locations and shapes (i.e., which way each intersection leads). Once 
the system detects an intersection, the system should convey the 
intersection’s shape to the user through audio feedback. By doing 
so, the blind user will be able to decide which way to go based on 
the original route information obtained from sighted passersby. 

3.3.2 Sign Recognition. While intersection information may be 
sufcient to reach a destination, signs were found to make blind 
people more confdent about their location. As indicated by the 
interview results (Section 3.2.1), the system should detect two types 
of signs, directional signs and textual signs. Directional signs are 
expected to help blind users confrm that they are on the correct 
route and help them make a decision at an intersection. Textual 
signs are expected to help blind users verify where they are and if 
they have reached their destination. As blind people cannot notice 
the existence of signs, the system should detect and notify the 
possible existence of a sign. Finally, as not all signs are relevant, the 
system should read out signs only if the user wants the system to. 

3.4 Prototyping 
We then prototyped the frst version of PathFinder based on the 
design derived from the frst study session. The details of the imple-
mentation will be described in Section 4. Below, we frst describe 
the handle interface and audio feedback of the prototype version 
of PathFinder. 

3.4.1 Employing Suitcase-shaped Robot. We adopted a suitcase-
shaped robot, as its appearance would allow the user to blend 
into a surrounding environment, such as a building in a metropoli-
tan environment [21, 27, 29] and where the study was conducted 

in. The system will run alongside and slightly ahead of the user, 
enabling the system itself to be a protection by colliding with obsta-
cles frst [21]. Unlike quadruped robots that make a lot of walking 
noise [7], the form of a suitcase enables the system to take images 
from sensors stably with less motion blur [27, 28], which would 
allow the system to gain better recognition results of signs and 
intersections. While the weight of our current system is approxi-
mately 40 pounds, we expect that size and weight of the computers 
and sensors in the suitcase to get lighter and smaller, which will 
enable users to carry the system around more easily. 

3.4.2 Map-less Navigation States and Interface. The user can pro-
vide instructions to the system via the four buttons attached to the 
system’s suit-case handle, consisting of a front button, a left button, 
a right button, and a back button (Fig. 4). These buttons function 
diferently when Pathfnder is in the idle state or the moving state, 
as described below. 

When the system is in the idle state (e.g., pausing at an inter-
section or at its initial position) pressing the left/right button will 
instruct the system to face the next path which is on the left/right of 
the current facing direction while saying “Turning left/right.” Press-
ing the front button will switch the system to the moving state 
and instruct it to move to the next intersection, saying “Going to 
the next intersection.” Finally, pressing the back button will initiate 
Pathfnder’s sign recognition module while also saying “Recogniz-
ing signs.” Then, recognized signs will be read out after it fnishes 
processing. An example of the audio feedback when three signs 
are recognized is as follows: “There are three signs. 1. Forward, main 
lobby, 2. Right, Mechanical Engineering, and 3. Entering [proper noun] 
Hall.” 

In contrast, if the system is in the moving state, only two but-
tons, the front and the back buttons can be used. Pressing the front 
button will make the system switch between the Next Intersection 
mode and the Hallway-end mode. In the next intersection mode, the 
system will navigate until it reaches the next intersection, where it 
would stop and convey the intersection’s shape. We adopted the 
clock position to convey the shape of intersections as it is capable of 
conveying non-perpendicular turns, and can be easily generalized 
in public buildings. An example of the feedback when an inter-
section that leads to forward, left, and right is found is as follows: 
“Found route to forward, two o’clock, and nine o’clock.” Meanwhile, 
the hallway-end mode instructs the system to move forward until 
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Figure 4: Handle interface of our PathFinder. It has four buttons, and each button is assigned diferent functionalities according 
to the system’s state as indicated. 

it reaches the end of the hallway, ignoring all intersections along 
the path. This is useful when there are a lot of intersections and the 
blind user knows they will not be making any turns. Note that when 
this button is pressed, the system will say, “Going to the next inter-
section/end.” On the other hand, pressing the back button causes the 
system to stop and switch back to an idle state while also saying 
“Stop.” For simplicity of design, the system does not take any input 
while it is turning until the turn is done. 

3.5 Design Iteration 
After implementing the system, we conducted another session with 
the same group of fve blind participants (P01–P05 in Table 2). The 
aim of the study was to improve the interface and functionality of 
the system. For each participant, we frst introduced the system and 
asked them to use the system while walking along R1 and R2. We 
then interviewed the participants about areas for improvement. The 
interview took 75 minutes and each participant was compensated 
$35. 

All fve participants generally agreed that the prototype version 
of the system will be helpful when navigating an unfamiliar build-
ing. Still, we received comments to improve the system when we 
asked for suggestions. Below, we list the major suggestions obtained 
from participants and a summary of updates made to the interface 
of the system. 

3.5.1 Intersection shape should be conveyed using “lef, right, for-
ward, backward” terminology. Three participants mentioned that 
intersection shape should be conveyed with left and right, and 
not with clock position. As the two routes in the study contained 
only perpendicular intersections, we updated the audio feedback so 
that the system conveyed the intersection shapes using “left, right, 
forward, backward” terminology. 

3.5.2 Position of textual signs should be conveyed, and fewer signs 
should be read. P04 pointed out that the system should convey the 
position of textual signs. He indicated that conveying its position 
is important, so that he knows where exactly the destination is if 
the system reads out room numbers. As such a feature is important 
for the last-few-meters problem [54], we updated the system to 
read out the distance and position of textual signs. Specifcally, the 
system will convey the direction (e.g., left, left wall, right, right wall, 
and front) and distance to a textual sign. 

In addition, three participants mentioned that the amount of 
information from signs was overwhelming as PathFinder read out 

all signs in its feld of view. In the study, there were several situations 
where it read out more than six signs. Therefore, we updated the 
system so that it will read a maximum of four signs. The system 
will frst read directional signs, then textual signs if directions in 
the directional signs were fewer than four. When reading textual 
signs, the room number is read preferentially. Overall, we updated 
the audio feedback as follows: “There are two directional signs. Left, 
corridor 4600, and right, (corridor) 4508 to 4533. Also, there is one 
textual sign saying room number 4521 to your front, 2.1 m ahead.”. 

3.5.3 Associating information from directional signs with the turn 
direction at intersections. In the prototype version of PathFinder, the 
system only read out directional signs when the user initiates sign 
recognition. However, P01 pointed out that it would be helpful if the 
system could also read out where the system is turning to, from a 
nearby directional sign when a turn is being made at an intersection. 
For example, if a sign with “Right, corridor 4200” is recognized 
near an intersection that leads to the right and the user instructs 
the system to turn right, the system should say, “Turning to the 
direction of Corridor 4200” when making the turn. We implemented 
this feature on the system as it may increase its usability. 

3.5.4 Merge stop buton and sign recognition buton. Three par-
ticipants stated that the current interface of needing to press the 
back button twice to recognize a sign from the moving state is a 
cumbersome process. Hence, we updated the button layout of the 
handle interface so that sign recognition can be initiated even if 
the system is moving. Pressing the back button causes the system 
to switch back to the idle state and instructs the system to run the 
sign recognition algorithm, saying “Recognizing sign.” 

3.5.5 Add “Take-me-back” functionality. P01 pointed out that it 
would be helpful if the system could take them back to the initial 
position where they started from, as such a task is difcult for blind 
people [18]. Therefore, we added a “Take-me-back” functionality to 
the system. As the system constructs a cost map and accumulates 
the map information over time, the system is able to maintain 
information about the initial position and return to it. 

4 IMPLEMENTATION 
This section describes our implementation of PathFinder based 
on the design considerations in the previous section. PathFinder 
requires a 360◦ LiDAR and an IMU sensor to construct a LiDAR map 
on the fy and detect intersections. It also requires a camera that 



CHI ’23, April 23–28, 2023, Hamburg, Germany Masaki Kuribayashi et al. 

Figure 5: Steps for intersection detection: (A) Raw LiDAR map created by the system using SLAM (B) Detecting the closest convex 
hull similar to the method of Yang et al. [66] (C) Skeletonizing the regions outside of the convex hull to identify waypoints (D) 
Detected waypoints in the corridor regions, with the waypoint selected by the user shown in blue. 

can capture indoor signs as clearly as possible. We chose the open 
source robot platform CaBot1 as our base platform and extended it 
for PathFinder. 

To navigate in a building without prebuilt maps, our system 
constructs a LiDAR map of its surrounding environment in real-time 
by 2 using Cartographer , an open-source SLAM implementation. 
Our system operates an algorithm on this real-time map to fnd 
the paths that the system can navigate, and informs the user about 
intersections. 

Although the system has an RGBD camera (installed at about 
0.7 m from the ground), we attached a smartphone with a high 
resolution camera (iPhone 12 Pro) on an extendable stabilizer (Fig. 1– 
A, at 1.1 m from the ground) so that it could efectively capture 
indoor signs from a higher position and with a higher resolution 
compared to the RGBD camera. Here, the iPhone was chosen to 
enable fast prototyping of the system. Future versions may instead 
use an extra camera in an integrated manner. We selected a mini PC 
equipped with an NVIDIA RTX 3080 graphic board as the processing 
unit of the system so that it can perform sign recognition while 
also operating the CaBot. The iPhone and the PC are connected via 
Bluetooth to provide audio feedback and via Wi-Fi local network 
for fast image transmission. Below, we describe the details of our 
intersection detection and sign recognition algorithms. 

4.1 Intersection Detection 
To detect intersections, we use the method proposed by Yang et 
al. [66]. The system frst extracts waypoints for where the system 
can move from the latest LiDAR map. If there are waypoints found 
on the left or the right sides of the system, this means that the 
system has detected an intersection. In such a case, the system will 
stop and inform the user of the detected directions so that the user 
can determine which way to turn. In addition, the algorithm is 
further used to make the system move in the middle of the corridor 
for their safety [36], and keep the heading direction of the system 
facing the corridor. 

Our overall algorithm to extract waypoints runs at about 10 Hz, 
and can be described as follows. 

1https://github.com/CMU-cabot/cabot 
2https://github.com/cartographer-project/cartographer_ros 

(1) The system extracts a region of size 20 m × 20 m around the 
system from the latest LiDAR map (Fig. 5–A). 

(2) Based on the extracted map, the system applies the following 
steps proposed by Yang et al. [66] to detect all the corridors 
leading to the intersection: (Fig. 5–B). 

(a) The system samples points starting from the surrounding 
obstacles (e.g., walls) within a certain radius (8 m) of the 
system, at constant angular intervals (10◦), as shown with 
red circles. 

(b) The system computes a convex hull using the sampled 
obstacle points, shown as the blue region. 

(c) The system extracts the obstacle-free areas from outside 
the convex hull as the corridor region(s) (colored regions 
outside the convex hull). 

(3) The system extracts the topology of the middle of the de-
tected corridors by skeletonizing the image of the LiDAR 
map (Fig. 5–C). 

(4) Finally, the system assigns the furthest point on the topology 
from the system in each corridor region as waypoints that 
the user can instruct the system to move to (Fig. 5–D). 

Note that if the system does not detect any corridor on either side 
of the system, then the system will continue to move forward until 
it is stopped by the user or until it fnds an intersection or the end 
of the hallway. 

4.2 Sign Recognition 
Indoor signs are often placed on the ceiling or on the walls at a 
distance, and they appear very small in the images. To recognize 
texts and arrows accurately, we need an OCR model and arrow de-
tection model which require about 5 seconds on average to process 
on our PC (including communication times), which may be too 
long for a blind user to wait for [54]. Therefore, we implemented a 
sign detection module. The sign detection module informs the user 
about the possible existence of a sign in real-time, without fully 
recognizing the sign, and the user can initiate sign recognition if 
they think the sign may beneft them to reach the destination. Here, 
we describe the sign detection module and the sign recognition 
module. 

https://2https://github.com/cartographer-project/cartographer_ros
https://1https://github.com/CMU-cabot/cabot
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Figure 6: Our sign recognition module consists of four steps. The system frst applies arrow detection and OCR (A), followed 
by Laplacian fltering and image binarization (B). Then the system fnds the individual regions in the image using connected 
component analysis (C), followed by a rule-based grouping to associate the arrows and recognized text (D). 

4.2.1 Sign Detection Module. The module is implemented as an 
iPhone app by using the Optical Character Recognition (OCR) 
model from the iOS Vision API3 . The model detects texts approx-
imately at fve Hz on the iPhone, and the depths of the detected 
texts are then measured using its LiDAR sensor. If a piece of text is 
detected in fve consecutive frames and is found to be within 6.5 m, 
the system notifes the user of the possible existence of a sign by 
saying, “There might be a sign.” If the user then chooses to initiate 
the full sign recognition, the system will then send the image taken 
by the smartphone to the PC on the system via the local network. 
The system will not inform the existence of a sign which is within 
5 m from the previously detected sign. 

4.2.2 Sign Recognition Module. When the user initiates the sign 
recognition by pushing the back button, the system commands the 
iPhone to send an RGB and depth image to the sign recognition 
server running on the system’s PC via the local Wi-Fi network. 
Once the image is sent to the server, the system runs OCR using 
the OCR Python y4 Easy librar  which is more accurate than the 
iOS OCR, and runs YOLOv5 [15] object detection model to detect 
the arrows in the image. We trained the object detection model to 
detect and classify eight categories of arrows (four horizontal and 
vertical directional arrows, and four diagonal directional arrows). 
An example illustration of the detection result is shown in Fig. 6–A. 
According to the system design (Section 3.3.2), it is necessary for 
the system to recognize both directional and textual signs. To do 
this, the system needs to associate the detected arrows with the 
detected texts to recognize a directional sign, while also separating 
the texts from the arrows if there is a textual sign. To do this, the 
system assumes texts and arrows can be grouped together if they 
have a similar background color. Below, we describe the steps of 
our grouping algorithm for signs. 

(1) The system frst detects edges in order to separate regions 
with diferent background colors. This is done by applying a 
Laplacian flter to each of the RGB channels, then for each 
pixel, selecting the highest value over the channels to create 
a single-channel image. This will result in an image where 
pixels with high values represent edges, while those with 
low values represent non-edges. 

3https://developer.apple.com/documentation/vision/recognizing_text_in_images/ 
4https://github.com/JaidedAI/EasyOCR 

(2) The system then obtains a binarized image by assigning 0 
to pixels whose values are higher than a pre-determined 
threshold value, and 1 to all other pixels (Fig. 6–B). 

(3) The system applies the connected component labeling algo-
rithm to the binarized image to determine the regions with 
similar background colors, and obtain a region label for each 
pixel (Fig. 6–C). 

(4) The arrows and texts whose bounding boxes have the same 
region label are then grouped together (Fig. 6–D). 

As a result, the grouped sets of arrows and texts will be obtained. 
Note that a text may not necessarily have to be grouped with 
arrows, as the algorithm only considers the background color of 
each bounding box. Note that in practice, a grouped set may include 
multiple arrows and texts. Deciphering matches between multiple 
arrows and texts would involve a more complicated algorithm 
outside of the scope of this study. So we only consider signs where 
each text corresponds to only one arrow. The system calculates 
the euclidean distance between the center of the bounding boxes 
of arrows and texts, and groups texts with arrows that have the 
smallest distance between them. Finally, using the LiDAR sensor of 
the iPhone 12 Pro, the system removes signs that are further than 
6.5 m from the recognition results, so that only signs with accurate 
detection results are conveyed to the user. 

5 MAIN STUDY 
The main goal of this study is to understand the efectiveness of 
our complete system and how well it can assist blind people. For 
comparison, we used a system with prebuilt maps as the topline 
reference, which we assumed to provide the best possible naviga-
tion experience. We conducted the main study with seven blind 
participants (P06–P12 in Table 3). This study was approved by the 
IRB of our institution, and an informed consent was obtained from 
every participant. Each study took 150 minutes and participants 
were compensated $70. 

5.1 Tasks and Conditions 
We asked the participants to navigate R1 and R2 (Section 3.1) from 
the starting points to the destinations. We prepared two conditions, 
one where participants used PathFinder and the other where they 
used the topline system i.e., a system that uses prebuilt maps. We 

https://developer.apple.com/documentation/vision/recognizing_text_in_images/
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Table 3: Demographic information of blind participants in our main study (P06–P12). Also listed are the main study participants’ 
normalized task completion times, and the number of times they asked for the route during navigation. *1: normalized as they 
chose a slower speed. *2: normalized as the previous user’s topline setting was used accidentally 

ID Age 
Age 
of 

onset 
Gender 

Navigation 
Aid SUS 

Normalized task completion time [sec] 
Route 1 Route 2 

PathFinder Topline PathFinder Topline 

Times asked for route 
Route 1 Route 2 

PathFinder 

P06 68 0 Male Cane 87.5 398.3 59.2 491.5 240.7 4 6 
P07 69 49 Female Cane 95.0 174.5 ∗1 ∗166.3 919.8 ∗1 234.7 ∗1 0 3 
P08 63 0 Female Cane 72.5 854.3 ∗1 ∗166.1 914.9 ∗1 239.0 ∗1 2 6 
P09 63 56 Male Cane 80.0 260.4 ∗266.7 601.5 230.8 0 3 
P10 74 0 Female Cane 92.5 223.6 60.1 404.2 259.9 0 2 
P11 63 3 Female Cane 90.0 147.3 60.9 350.3 240.6 0 3 
P12 50 1 Male Guide dog 52.5 163.1 63.0 573.0 232.1 3 2 

Mean 64.29 85.25 317.36 63.16 607.88 239.69 1.29 3.43 
±SD ±7.52 ±15.74 ±251.68 ±3.20 ±228.85 ±9.78 ±1.70 ±1.80 

did not include the condition of using only the regular aid for safety 
concerns, as blind people usually do not navigate in unfamiliar 
buildings without an assistant [14, 25]. 

5.1.1 PathFinder. For the condition using PathFinder, we frst de-
scribed the route to the destination to the participants, then asked 
them to navigate to the destination. They were allowed to ask the 
experimenter for the route during the task if they needed it, in 
which case the experimenter would describe the route again from 
their current position to the destination. The number of times they 
asked for the route description is reported in Table 3. The experi-
menter intervened in the study only if the participants turned at 
the wrong intersection or the system malfunctioned. 

5.1.2 Topline System. For the topline system, we used software5 

that can navigate blind people in buildings with prebuilt maps, 
which run on the same suitcase-shaped robot. The system also 
has a handle interface with three vibrators, on the right, left, and 
top of the handle. To operate the topline system, we constructed 
full prebuilt maps of R1 and R2, which are annotated with POIs 
such as intersections, building names, and facility names. When 
the system is initiated, it localizes itself in the prebuilt map using 
BLE beacons, which are attached to the building. In the study, the 
experimenter manually set the destination remotely via a smart-
phone application, and the system started navigating to it once the 
user pressed a button on the handle. During navigation, the system 
reads out annotated POIs along the way, and while turning the 
vibrator which is in the direction of the turn vibrates. When the 
navigation ends, the topline system indicates that they have arrived 
at the destination. Note that the duration to navigate through R1 
and R2 does not depend on a participant, but mostly on the so-
cial context of the building (e.g., a crowd of people), as the topline 
system automatically navigates to the destination at a constant 
speed. 

5https://github.com/CMU-cabot/cabot 

5.2 Procedure 
We frst introduced PathFinder and explained its map-less navi-
gation feature and conducted a 30-minute training session. In the 
session, we adjusted the speed of the system to 0.75 or 0.50 meters 
per second (m/s) based on each participant’s walking speed. The 
adjusted speed was used for all tasks and scenarios for the partic-
ipant. Then, the participants were asked to navigate through R1 
and R2 with PathFinder based on the route descriptions we gave 
them. At the end of each route, they were also asked to use the 
“Take-me-back” functionality and go back to the initial position. 
Next, the participants were asked to navigate R1 and R2 again us-
ing the topline system. We did not counter-balance the order of 
the PathFinder and the topline systems because we did not want 
to induce any route learning in the user by using the topline sys-
tem prior to using PathFinder. If we counter-balance the order of 
conditions and let several participants perform the topline system 
frst, the task using PathFinder will be signifcantly easier due to 
the prior knowledge of the route walked with the topline system, 
as PathFinder will require users to memorize the route descrip-
tion while topline system does not. The tasks were video recorded 
so that it allows us to complement quantitative results. After the 
navigation, we asked the participants to answer a set of questions 
(Q1–8 in Fig. 7) on a seven-point Likert scale (1: Strongly disagree, 
4: Neutral, and 7: Strongly agree). We asked Q1–Q3 three times, to 
compare their experience when using their regular aid (i.e., canes 
or guide dogs), PathFinder or the topline system. Then we asked 
Q4–8 regarding the usability of PathFinder. Finally, we asked par-
ticipants to rate PathFinder using system usability scores (SUS) [4] 
and gathered open-ended questions for qualitative feedback. 

5.3 Metrics 
We used two metrics to evaluate and analyze the usage of the 
proposed system. 

5.3.1 Normalized Task Completion Time. We measured the time 
taken to complete each task. We started the timer when the par-
ticipants pressed the button to initiate the system at the starting 

https://github.com/CMU-cabot/cabot
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Figure 7: Questions and responses from our main study with seven blind participants. Responses are rated on a seven-point 
Likert scale. Responses marked with * indicate a signifcant diference between the systems when applying the Wilcoxon sign 
rank test (p<.05). 

point. The timer was stopped when the participants verbally indi-
cated that they had arrived at the destination and were 5 m within 
the destination. As some of the participants used a slower speed 
(0.5 m/s), we normalized their task completion times such that all 
times correspond to 0.75 m/s. This is calculated 0 as �� ×  . 5 

0 75 + �. � 
where �� is the total duration the user and the system are moving 
together, and �� is the duration for which they are standing still 
(which is thought of as the users’ decision making time). 

5.3.2 Performance of Intersection Detection and Sign Recognition. 
To evaluate the performance of the system, we measured two met-
rics based on the logs recorded by the system during the study. 
For intersection detection, we classifed a detection result into four 
cases: (1) correct detection when the system correctly detected the 
intersection’s shape, (2) partially correct detection when the system 
detected the turn direction, but missed some directions which are 
not a direction of turn, (3) failed detection when it did not detect 
the turn direction, and (4) false positive detection when the sys-
tem detected an intersection where there was none (i.e., at straight 
corridor). 

For sign recognition, we classifed detection results into four 
cases: (1) correct and relevant recognition where the detection result 
contained information to reach the destination, (2) correct but irrel-
evant recognition where the result was correct but contained only 
irrelevant information, (3) null recognition where the system did 
not recognize any sign, and (4) wrong recognition where the system 
was unable to recognize sign correctly as either arrow detection, 
OCR or the grouping algorithm failed. Note that the number of 
correct and useful recognitions and correct recognitions may vary 
depending on the route and destination. 

6 RESULTS 

6.1 Overall Performance 
6.1.1 Normalized Task Completion Time. Table 3 shows the results 
of the task completion time. Statistical analysis using the Wilcoxon 

signed-rank test revealed that tasks with PathFinder took signif-
icantly longer to complete compared to those with the topline 
system (� < .05 for both R1 and R2). Below, we summarize four 
reasons why our proposed system took a longer time to complete 
a task. 1) Our system took extra time because PathFinder stopped 
at each intersection. 2) Participants took time to recall and deter-
mine the direction to turn. 3) Our system required time to run sign 
recognition each time it was initiated. 4) There were four times that 
participants turned at a wrong intersection (Occurred twice for P08, 
and once for P06, P07, and P09) and it took extra time for them to 
return to the correct route. 5) P08 was particularly confused about 
the interface of the system and took extra time to complete the 
tasks. 

6.1.2 Subjective Ratings. Fig. 7 shows the results for Q1–8. Statis-
tical analysis using the Wilcoxon signed-rank test revealed that 
participants felt that PathFinder is signifcantly better compared 
to their regular aids for Q1 and Q2 (� < .05). The same test also 
revealed that the topline system received signifcantly better rat-
ings than the proposed system for Q1 and Q2 (� < .05). For Q3, 
there was no signifcant diference neither between PathFinder and 
regular navigation aids (� = .14) nor between PathFinder and the 
topline system (� = .09). Finally, Table 3 shows the SUS scores given 
by each participant. 

6.2 Performance of Intersection Detection and 
Sign Recognition 

PathFinder detected intersections 108 times in total throughout the 
whole study. There were 61 correct detections, nine partially correct 
detections, fve failed detections, and 33 false positive detections. 
The partially correct and false positive detections did not harm the 
performance of the task, as it still detected the way the blind par-
ticipants have to go. The false positive detections mainly occurred 
when navigating through a glass bridge in R2. The system detected 
false intersections on this straight bridge, as glasses are transparent 
from the LiDAR sensor. Two failed detections out of fve occurred at 
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intersection A and intersection B (Fig. 2) when P07 was navigating 
R2 in a signifcantly crowded situation. In intersection A, the path 
was crowded in front of the elevators in R2, and the system did not 
detect the path that leads to the right. Also, the system detected 
intersection B, which leads to the front and left, as an intersection 
that leads to left and right, as the crowd afected the orientation of 
the system to face in between the two paths. The other three failed 
detections were related to system errors. 

Participants initiated sign recognition 62 times in total while 
navigating R1 and R2. Throughout the whole study, P06–12 initiated 
sign recognition 1, 16, 22, 10, 4, 4, and 5 times, respectively. There 
were 27 correct and relevant recognitions, 12 correct but irrelevant 
recognitions, 13 null recognitions, and ten wrong recognitions. Null 
recognition occurred when the participant initiated sign recognition 
where there was no sign. They initiated the sign recognition as the 
sign recognition module notifed them of the existence of signs, 
but by the time they press the back button, the sign was out of the 
camera’s feld of view. Also, participants who took the wrong path 
in their tasks tend to use the sign recognition function much more 
times, even when the system did not notify the possible existence 
of signs (P07 and P08). 

6.3 Video Observation 
6.3.1 Confusion When Using Sign Recognition. During the study, 
we observed an occurrence where the interface of the PathFinder 
confused two participants. P08 and P09 performed sign recognition 
on a directional sign (e.g., “Left, Corridor 4200, and right, Corridor 
4100”) at a spot before the desired intersection (about 1-2 m). After 
listening to the feedback, they immediately pressed the left/right 
button as they thought it would take them to the next path. As 
the system was before the intersection and had not detected it 
yet, the system turned backward. While P09 was able to recover 
after a short time of confusion, P08 was quite confused with the 
occurrence, because the system did not move as she wanted it to. 
C3:“It confused me when it was telling me that a sign was available, 
but I am not at an intersection... like when it was telling me to take 
the right turn to Destination 2, but I went down the wrong corridor 
because I wasn’t yet at the intersection to make the turn.” (P09) 

6.3.2 Navigation Error Occurred When Intersection Detection Failed. 
The intersection detection error in intersections A and B (Figure 2) 
both occurred when P07 was performing the task. In intersection 
A, the system was able to detect the shape of the intersection cor-
rectly when the system ran the intersection detection algorithm 
again after the crowd was eased. When the detection failure in 
intersection B happened, she instructed the system to turn in the 
wrong direction instead of going forward. She realized that she had 
turned in the wrong intersection after reaching the dead end of the 
hallway and managed to recover back to intersection B. 

6.4 Qualitative Feedback 
6.4.1 Positive Feedback. Through the study, we received many 
comments indicating that they found the functions of PathFinder 
useful. All participants found the intersection detection feature of 
the system helpful, as it can fnd an intersection more accurately 
and quickly compared to their usual navigation aid. C4:“(To fnd an 

intersection) I would have to stay close to the walls and feel with my 
cane, which is not always possible. But with the robot, I can quickly 
fnd the intersection without being close to a wall.” (P10) 

In addition, the sign recognition feature of the system was gen-
erally appreciated by the participants. Participants described the 
advantage of textual signs and directional signs as follows: C5:“ I 
really liked the sign recognition. If I’m in an unfamiliar place like an 
airport, and it read out the gate number (textual sign), I would imme-
diately know where I am and that there are more gates” (P06) and, 
C6:“ Yes (directional signs are useful), it gives confrmation which is 
important, and you can get confdence about where you are going.” 
(P11) 

Also, the “Take-me-back” functionality was appreciated by all 
seven participants from the main study. C7:“ It was very useful and 
felt almost like the with-map robot. It would be very convenient when 
I’m in an ofce building and want to quickly fnd my way back to the 
entrance. I can also envision the ability to key in my favorite spots 
while I’m exploring and then trust the robot to directly take me to 
those spots while I’m navigating the second time.” (P09) 

When we asked whether PathFinder is acceptable compared to 
the topline system, all participants agreed and were appreciative 
of its advantage that it could be used in more places compared to 
the topline system: C8:“ If a map is available, it is defnitely the 
most useful. But maps are not available everywhere. However, even 
without map information, the robot is very useful because it reads 
out information around me and that lets me fnd my way.” (P07) 
While the topline system generally received higher ratings in Q1–3, 
two participants still found the controllability of PathFinder to be 
better than the topline system. C9:“ With PathFinder I felt like I was 
in more control as I had the ability to get feedback from it at every 
intersection and use my own judgment. But with the topline system, I 
just had to let it do its thing, which I’m not fully trusting of. ” (P09) 

6.4.2 Negative Feedback. Participants were confused when the 
system indicated the possibility of the existence of a sign, without 
indicating what types of signs they were: C10:“ I felt like the system 
wasn’t picking up all the signs, and when it did, it didn’t say what 
kind of sign it was right away. It is important for some kind of signs 
to be known right away, like fre exits, instead of having to ask for it 

   each time.” (P07)
P12 rated the SUS score the lowest. When we asked him for the 

reason, he commented that guide dogs w for b  etter tool ould be a 
           their secondary travel, as follows: C11:“ I think once I learn the 

layout of a building, I will be able to navigate much faster with my 
       guide dog than with the robot.” (P12)

6.4.3 Comparison with Guide Dogs. When we asked P12, who is a 
guide dog user, about the diference between the proposed system 
and the guide dog, he mentioned two points, that guide dogs may 
miss an intersection unless the user is aware of it, and guide dogs 
do not remember how to return to previous places, as follows: C12:“ 
With guide dogs, I have to know when to turn. But the robot will tell 
me, so I won’t miss the intersection... The guide dog doesn’t always 
know how to go back. I have to remember the route and teach the dog. 
With the robot, I would just have to hit the button, and it would take 
me back. I didn’t have to remember the route by myself.” (P12) 
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7 DISCUSSION 

7.1 Comparison with Topline and Regular Aids 
PathFinder may be considered to be an option that could be in 
between the topline system and regular aid for its performance, 
functionality, and usable area. The confdence scores were signif-
icantly higher than the regular aids, and lower than the topline 
system (Fig. 7–Q1). The ratings for cognitive load were signifcantly 
higher than the regular aids (lower cognitive load), but lower than 
the topline system (higher cognitive load) (Q2). As for the usable 
area of the aid, regular aids are the largest, as there are routes in 
which PathFinder cannot be used, such as routes with steps or rough 
surfaces. The topline system has the smallest usable area, given the 
requirements of the prebuilt maps. The task completion time for 
PathFinder was signifcantly longer than the topline system. This 
result is expected since it is necessary for each participant to stop 
at each intersection to choose a direction. The topline system can 
announce POIs, and PathFinder can do this partially using its sign 
recognition module. The regular aids do not have the capability to 
announce POIs. 

In short, PathFinder can be a unique “in-between” option for 
blind people. The topline system can provide highly reliable and 
robust navigation while announcing POIs, but its usable area is 
small. Regular aids, on the other hand, can be used in most envi-
ronments, but their reliability is low. PathFinder’s approach can 
realize novel scenarios such as visiting an unfamiliar indoor public 
space and navigate without prior preparation and sighted compan-
ion. We still have a long way towards the goal, especially for the 
recognition capabilities, but we believe this study showed a new 
possible solution. 

7.2 Usability 
The system received favorable ratings with medians of 6 and 7 on 
the Likert scale for usability scores (Q4: 6, Q5: 7, Q6: 6, Q7: 6, Q8: 
7). The ratings for the interface show the success of our participa-
tory design process. Also, the median ratings for intersection and 
sign detection were both 6. One of the reasons why neither of the 
scores was 7 may be the interface design related to sign recogni-
tion. PathFinder requires the participants to select directions via 
buttons after reaching an intersection, not after the announcement 
of directional signs (Section 6.3.1, and C3). P08 was particularly 
confused with the occurrence of accidentally turning backward af-
ter listening to information about directional signs that the system 
recognized (Section 6.3.1), and rated the score for Q3 (confdence 
in the walking direction) with a 4 for the regular aids and a 2 for 
PathFinder. Although all other participants rated PathFinder to be 
higher than the regular aids for Q3, there was no signifcant difer-
ence between PathFinder and the regular aids. Also, there was no 
signifcant diference between PathFinder and the topline system 
for Q3 as P09 rated PathFinder higher (PathFinder: 6, Topline: 5) 
and P12 rated both the same (both 7). To prevent the occurrence of 
accidentally turning backward, the system can ask the user for ver-
ifcation when turning before an intersection so that it can prevent 
the unnecessary backward turn (e.g., “You are trying to turn before 
an intersection. Are you sure you want to make a turn?” ). 

7.3 Controllability 
Two participants indicated that PathFinder was even better than 
the topline system in terms of the trust, as they gained more con-            
trollability with the system (C9). They preferred a more controllable          
system in spite of the time disadvantage. The current navigation          
robot systems are designed by on putting weight  automation more 
than controllability. It may be possible to integrate some controlla-         
bility into the topline system, such as a route-choice interface at           
an important intersection toward a destination. At this        moment, 
it is not clear how we can balance automation and controllability,           
but future  navigation robot systems for blind people may wish to 
consider this as part of the design.       

7.4 “Take-me-back” Functionality and Gradual 
Map Creation 

All participants unanimously agreed that the “Take-me-back” func-
tion was useful, as returning to the entrance is generally challenging 
for blind people, especially in unfamiliar buildings. P12 indicated 
that guide dogs could not complete such a task, as guide dogs do 
not remember an unfamiliar building layout (C12). This feature 
also leads toward the discussion of the gradual creation of maps 
equivalent to prebuilt maps, by blind users themselves. It may ac-
cumulate the necessary data to enable with-map navigation for 
routes to typical destinations at the building if the system preserves 
constructed LiDAR map data and provides an interface for blind 
people to annotate the LiDAR map with visited routes and POIs 
(C7). Such a feature can be a game changer for navigation systems 
by paving the way toward city-wide maps. 

7.5 Possible Improvements for PathFinder 
The current intersection detection algorithm works robustly only 
on limited situations and buildings. For example, in the main study, 
PathFinder sometimes misinterpreted the shape of an intersection 
(Section 6.2). The system detected an intersection in R2 as a dead 
end, because the corridor was packed with a crowd of people. In 
such situations, it may be necessary for the system to determine 
the level of congestion, and emit a path-clearing sound, so that 
people may move out of the way for the system to eventually fnd 
an intersection [27]. In addition, the system made multiple false 
positive detections at the glass bridge in R2, as the system failed 
to extract the shape of the bridge to a LiDAR map because of the 
transparency of glass to LiDAR. Besides, the system can not detect 
intersections at buildings with open spaces such as open halls or 
wide corridors, such as an atrium, because the current implementa-
tion has an assumption of the size of an intersection (Section 4.1). It 
is also difcult for PathFinder to defne a local destination in an open 
space, resulting in the system to go in a random direction, as the 
topology extraction is likely to fail. To increase the generalizability 
of PathFinder, it is necessary to consider various environments (e.g., 
open hall, hallway with open doors, glass bridge, and a wide corri-
dor) to improve the intersection detection algorithm, for example 
by also using RGB camera as well as LiDAR sensor. 

As for the sign recognition feature, while it was appreciated 
by the participants (C5 and C6), the function that conveyed the 
existence of the signs was insufcient (Section 6.2). As P07 pointed 
out, the system needs to detect types (i.e., whether it is directional 
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or textual) or relevancy (i.e., whether it contains necessary infor-
mation) of signs before notifying the user and running the full sign 
recognition (C10). As determining the types of signs will need to 
go through a sign recognition which takes 5 seconds to process, 
one solution is to determine the relevancy of a sign by using the 
information which the user can input prior to their travel [65]. The 
user may input some keywords, such as the name of the destination 
or room number, so that the relevancy can be determined by only 
the result of OCR. 

7.6 Limitations 
7.6.1 Limitation of Study Design. This study design had several lim-
itations. Firstly, the study was conducted on only two routes in our 
institution’s buildings. The performance of intersection detection 
and sign recognition may vary in other environments, therefore, 
a comprehensive evaluation of those functionalities is one of the 
important future works. We also made some assumptions with our 
choice of the study’s environment to prototype the PathFinder sys-
tem, such as routes without any steps and foor transitions. Features 
such as elevators or stairs may have been rated higher in the partic-
ipatory study if the route contained foor transitions. Therefore, it 
is necessary to conduct a further study by considering routes with 
various features. Secondly, participants did not navigate through 
the route with their regular aid. The lack of empirical comparison 
with the regular aid may have led to infuencing their critique of 
the proposed system (e.g., some of them may have completed the 
route with their cane and rated their regular aid better in Likert 
questions). In addition, there were limitations regarding the recruit-
ment of participants. First, we were not able to recruit younger 
participants from the target population, and the number of guide 
dog users recruited in the main study was not sufcient. Also, while 
several participants participated in user studies for the frst time 
in our institution, others have not. For whom have participated in 
the user study in our institution in the past, there may have had a 
positive bias to our study. 

7.6.2 Limitation of Form Factor. In this study, we used a wheeled 
robot for its advantages (third paragraph of Section 1), but the 
form of the wheeled robot may induce several limitations on real-
world usage. Currently, its battery life is limited to only 2.6 hours 
of deployment, which is insufcient for long journeys. PathFinder 
may not be able to navigate through uneven terrains or outdoor 
environments due to the small size of the wheels. In such cases, 
we should consider using larger wheels and stronger motors. Also, 
users would have to carry the suitcase when navigating through 
the stairs, which could be physically demanding. We believe the 
gradual improvement of weights and capability of each component 
used would ease these issues. As we did not consider other devices 
which are preferred by blind people such as wearable devices or 
single smartphones in this study, these devices may potentially 
serve as a better solution for map-less navigation. Future work 
should explore these alternatives as well. 

In addition, there are also other problems that have to be solved. 
Firstly, in our implementation, the smartphone and the computer 
of the system were connected through Bluetooth. Interference by 
the surrounding usage of Bluetooth may cause the connection 
to be disturbed. In actual deployment, a robust way to connect 

the smartphone and the computer is required. Secondly, as the 
system keeps recording the surrounding environment, the privacy 
of pedestrians may be compromised. Although it has been shown 
that sighted people accept the usage of RGB images as long as 
they are used for assisting blind people to some extent [29], this 
problem should be carefully considered when actually deploying 
the system in the real world. Thirdly, PathFinder will not be able to 
navigate in a congested space. This is a well-known issue that is still 
being studied in robotics [69]. Finally, surrounding people would 
not be able to determine easily whether users of PathFinder have 
a disability as users do not hold their regular aid, thus the users 
may not be able to get help if needed. In such cases, the system 
should include some functionalities that can notify surrounding 
pedestrians to provide assistance to blind users. However, note that 
while some blind people have mentioned that they are afraid they 
will not be able to get help from surrounding people as much, some 
blind people prefer to blend into the environment without being 
known that they are blind [29]. 

8 CONCLUSION 
This paper presents PathFinder, a map-less navigation system that 
navigates blind people to their destinations in unfamiliar buildings. 
We adopted a participatory design approach, and frst investigated 
types of useful information for blind people when navigating an 
unfamiliar building. We found that intersections, directional signs, 
and textual signs provide the most useful information. Based on 
these insights, we designed and developed our frst map-less navi-
gation system prototype. The system uses a map-less navigation 
algorithm that navigates the user to the next intersection or end of 
the hallway. It also uses a sign recognition algorithm to read out di-
rectional and textual signs to make the user more confdent in their 
navigation. Then we went through a design iteration to improve the 
interface with fve blind people. Based on the comments obtained 
through the study, we updated how the intersections and signs 
are read out and the button layout of the handle interface. Also, 
a “Take-me-back” functionality was added to PathFinder. Finally, 
we conducted the main study, asking the participants to navigate 
an unfamiliar building using PathFinder. Using the system, all the 
participants were able to navigate to the destination with increased 
confdence and less cognitive load compared to their usual naviga-
tion aid. Although participants generally rated the topline system, 
i.e., a system which uses a prebuilt map, higher than PathFinder, all 
participants agreed that it is still an acceptable aid as it can be used 
in more buildings, and two of them considered the controllability 
of PathFinder as an advantage. Overall, PathFinder could be used 
as an “in-between” option between the regular navigation aid and 
the topline system, as it provides a good trade-of in terms of usable 
area and functionality. For future work, we aim to redesign the 
system by improving functionalities and considering the balance 
between automation and controllability of the system. 
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