Field Trials of Autonomous Navigation Robot for Visually Impaired People

Hironobu Takagi^{1,2} Kakuya Naito³ Daisuke Sato⁴ Masayuki Murata² Seita Kayukawa² Chieko Asakawa^{1,2}

Miraikan - The National Museum of Emerging Science and Innovation 2. IBM Research
Shimizu Corporation 4. Carnegie Mellon University

Current Mobility Aids

Guiding assistance

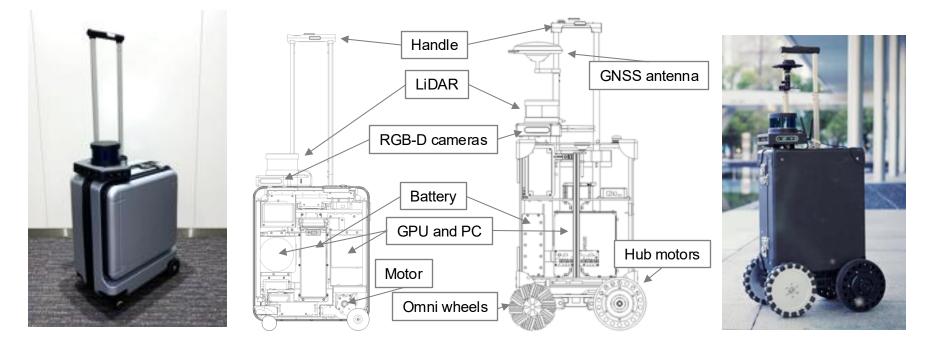
Guide dogs

White cane & tactile paving

Why a Suitcase?

Detect obstacles and steps ahead

Not stand out in urban areas



Provided by the Next-Generation Mobility Assistance Technology Development Consortium.

Al Suitcase - Mechanism

Indoor model (2022)

Outdoor model (2023)

User Interface

Automatic Stop

Navigating...

Stops when the handle is **released**

Tactile Feedback

Vibrate to notify turning direction

Select **Destinations** and get **real-time guidance**

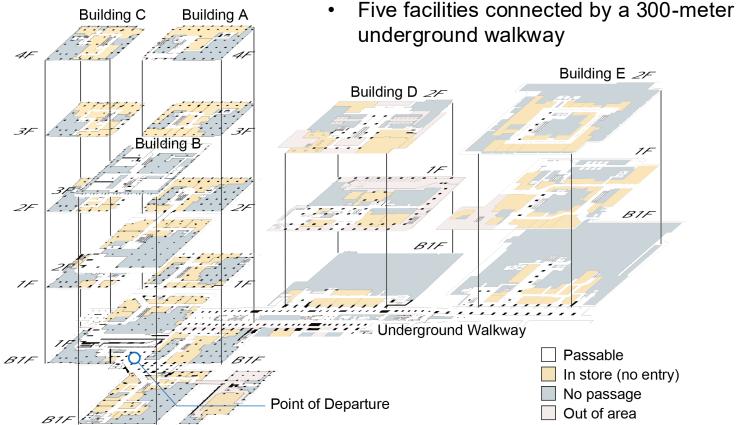
Smartphone app

Three Types of Field Trials

Indoor Pilot at Commercial Complex

Daily Operation at a Science Museum

Outdoor Pilot at Museum - Station


Indoor Pilot Study at Commercial Complex

• At a large commercial complex in Nihonbashi, Tokyo

• Participants: 38 visually impaired people

Map and Route

Results

Comments

- Many found **AI Suitcase easier to follow** than guide dogs because it required **no special training**.
- Users appreciated the ease of navigation, safety, and reduced stress.

Technical Challenges

 Occasional unnecessary stops in crowded areas and difficulty navigating stairs.

Non-technical Challenge

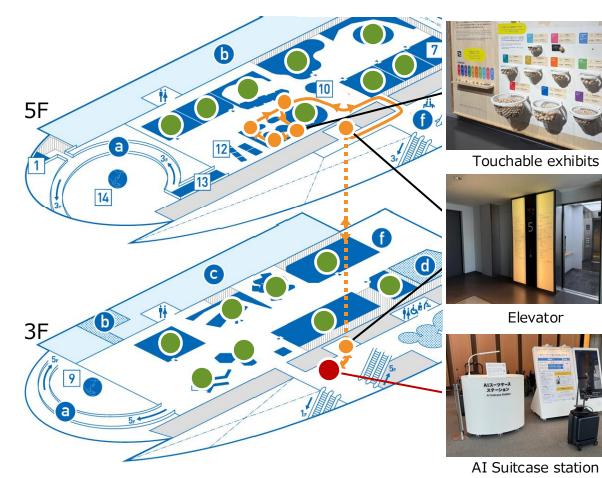
• Securing permissions from multiple facility owners

Daily Operation at a Science Museum

Daily Operation at a Science Museum

- Started April 18th, 2024 (No defined end date).
- Three slots a day (10:30 11:45, 13:30 14:15, 15:30 16:15)
- Visually impaired people can make reservations, while other people can use if there is no reservation.
- To ensure safety, museum staff acted as observers, following the users at a distance to monitor the operation and assist if necessary.

Reception & Instructions


Museum Tour

Routes

- 11,000m² exhibition floors
- (1) Predefined Tour

(Planetary Crisis Tour)

• (2) Free Choice

Exhibition Explanation

- - -

"Starting from the left, let's begin with the fertilized egg. It's incredibly small, with a diameter of about 160 micrometers." "Moving to the right, the next model represents the fetus at 19 days. At this

point, the emergence of red blood cells can be observed."

Results

- 1,288 participants (as of September 2024)
 - ¹⁄₄ were estimated to be visually impaired.

	Q1: Overall Experience						
	Very Dissatisfied	Dis- satisfied	Neutral	Satisfied	Very Satisfied		
BVIs (total)	0 (0%)	4 (4%)	11 (12%)	32 (36%)	42 (47%)	8	
(age: ~20s)	0 (0%)	0 (0%)	2 (10%)	7 (33%)	12 (57%)		
(age: 30~50s)	0 (0%)	1 (3%)	3 (9%)	11 (31%)	20 (57%)		
(age: 60s~)	0 (0%)	3 (9%)	6 (18%)	14 (42%)	10 (30%)		

Q2: Perception of Reliability and Safety	in AI Suitcase Navigation

	Very Unsafe and Anxious	Unsafe and Anxious	Neutral	Safe and Reliable	Very Safe and Reliable
BVIs (total)	0 (0%)	6 (7%)	19 (21%)	36 (40%)	28 (31%)
(age: ~20s)	0 (0%)	0 (0%)	2 (10%)	10 (48%)	^{9 (43%)} 71%
(age: 30~50s)	0 (0%)	4 (11%)	8 (23%)	15 (43%)	8 (23%) / 1 %
(age: 60s~)	0 (0%)	2 (6%)	9 (27%)	11 (33%)	11 (33%)

Outdoor Pilot

THE R. LEWIS CO.

10

1

112 11

Outdoor Pilot

Overview

- Challenges
 - Uneven terrain, curb crossing, and long-distance travel
- Prototyped an outdoor model
 - Large wheels and GNSS localization

Method

• For safety, multiple staff members monitored the test area, including crosswalks, and were prepared to intervene if any issues arose.

Route

January 2023

- Outdoor only
- 400-meter-long path
- A zebra crossing at a twolane road without a traffic signal

September 2023

- Indoor Outdoor Station
- Automatic door
- Elevator at the station

Taking the elevator to the station

Arrival point inside the station

Exiting to the park through automatic doors

Following the tiled path in the park

Crossing at a zebra crossing

Results

System Usability Scale (SUS) score

• Average 83.2 (among 14 participants)

Scores for Feelings of Safety and Comfort (Five-point Likert Scale)

Positive Aspects

• Vibration Signal on the Handle – Average: 4.7 / 5

Obstacle and Pedestrian Avoidance – Average: 4.5 / 5
Areas for Improvement

- Negotiating Curbs Average: 3.5 / 5
- Crossing Zebra Crossings Average: 3.4 / 5

Challenges to Social Implementation

- Cooperation with Facility OwnersCrowded Situations
- Real-world Information
- Outdoor Navigation
- Infrastructural Support
- Legal and Social Acceptance

Field Trials of Autonomous Navigation Robot for Visually Impaired People

- We are refining its capabilities through continuous field trials and user feedback.
- Collaboration with public institutions and policymakers is essential for regulatory adjustments.
- Public awareness campaigns will help normalize the presence of autonomous navigation robots in everyday life.
- Looking ahead, Al Suitcase will be featured in a large-scale trial at Expo 2025 in Osaka-Kansai, showcasing its potential to a global audience."

User Feedback

- "I feel independent I've never experienced after I became blind".
- •"I want to bring this robot back to my home."
- •"I want to give the robot a name like my guide dog."
- "I feel comfortable walking seamlessly and naturally in city areas without being recognized as a blind person."
- "It might be a bit scared because passerby does not notice we are blind, and we may not expect necessary help from surrounding people."